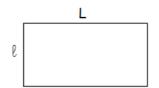
1

Objectifs

Produire et utiliser une expression littérale, tester une égalité

Résoudre une équation


I. Expression littérale

Définition

Une <u>expression littérale</u> est une expression dans laquelle figurent une ou plusieurs lettres.

Exemples

a) Périmètre du rectangle = $2 \times (L + \ell)$ C'est une expression littérale qui contient 2 variables appelées « L » et « ℓ ».

b) $A = x^2 + 3x + 2$ est une expression littérale qui contient une variable appelée « x ».

Définition

Réduire une expression littérale c'est l'écrire avec le moins de termes possibles.

Exemple

Réduire $A = x^2 + 6x - 4x^2 + 12 + 3x$

 $A = x^2 + 6x - 4x^2 + 12 + 3x$ (On regroupe les termes de « la même famille »)

 $A = -3 x^2 + 9x + 12$

II. Supprimer des parenthèses dans une somme

Règle 1

Dans une somme, toute <u>parenthèse précédée du signe+</u> peut être supprimée (avec son +) <u>sans</u> <u>changer les signes</u> de TOUS les termes à l'intérieur de la parenthèse.

Exemples

$$A = -3 + (+4 + a)$$

 $A = -3 + 4 + a$
 $A = 1 + a$

$$B = 2 + (+ a - 5)$$

 $B = 2 + a - 5$
 $B = -3 + a$

$$C = a + (-5 - a)$$

 $C = a$ - 5 - a
 $C = -5$

<u>Règle 2</u>

Cours 4e: TN6

Dans une somme, toute <u>parenthèse précédée du signe</u> peut être supprimée (avec son -) <u>à</u> <u>condition de changer les signes</u> de TOUS les termes à l'intérieur de la parenthèse.

Exemples

$$A = -3 - (+4 + a)$$

 $A = -3 - 4 - a$
 $A = -7 - a$

$$B = 2 - (+ a - 5)$$

 $B = 2 - a + 5$
 $B = 7 - a$

$$C = a - (-5 - a)$$

 $C = a + 5 + a$
 $C = 2a + 5$

III. Calculer un produit

La multiplication étant commutative et associative, on regroupe les facteurs numériques puis les facteurs littéraux.

Exemples

$$A = 3 y \times 4 x$$

$$B = -x \times (-3x)$$

$$C = 2 x y \times (-2x)$$

$$A = 3 \times y \times 4 \times x$$

$$B = -1 \times x \times (-3) \times x$$

$$C = 2 \times x \times y \times (-2) \times x$$

$$A = 3 \times 4 \times x \times y$$

$$B = -1 \times (-3) \times x \times x$$

$$C = 2 \times (-2) \times x \times x \times y$$

$$A = 12 x y \qquad B = 3 x^2$$

$$B = 3 x^2$$

$$C = -4 x^2 y$$

IV. Équations

a) Solutions d'une équation

Définition

Une équation est une égalité dans laquelle interviennent un ou plusieurs nombre(s) inconnu(s).

Exemple

 ∞ + 5 = 17 est une équation d'inconnue ∞ .

Définition

Résoudre une équation d'inconnue x, c'est trouver toutes les valeurs possibles de x (si elles existent) qui vérifient l'égalité, c'est-à-dire de sorte que l'égalité soit vraie. Chacune de ces valeurs est une solution de l'équation.

Exemples

1) Le nombre 3 est-il solution de l'équation 2 x + 3 = 7 ?

On remplace ∞ par 3.

Calcul du 1^{er} membre : $2 x + 3 = 2 \times 3 + 3 = 6 + 3 = 9$

Comme $9 \neq 7$, <u>l'égalité n'est pas vérifiée</u> pour $\infty = 3$.

Le nombre 3 <u>n'est donc pas solution</u> de cette équation.

2) Le nombre 2 est-il solution de l'équation 2 ∞ + 3 = 7 ?

On remplace ∞ par 2.

Calcul du 1^{er} membre : $2 x + 3 = 2 \times 2 + 3 = 4 + 3 = 7$

Comme 7 = 7, <u>l'égalité est vérifiée</u> pour x = 2.

Le nombre 2 <u>est donc solution</u> de cette équation.

b) Résoudre une équation

<u>Propriété</u>

On ne modifie pas une égalité lorsqu'on ajoute ou soustrait un même nombre à chacun de ses membres, ou lorsqu'on multiplie ou divise par un même nombre chacun de ses membres.

Exemples

1)
$$-2+x=-3$$

En ajoutant 2 à chacun des membres de l'égalité, on obtient : -2 + x + 2 = -3 + 2.

C'est-à-dire $\infty = -1$

2)
$$-5 x = 10$$

En divisant par - 5 chacun des membres de l'égalité, on obtient $\frac{-5x}{-5} = \frac{10}{-5}$ C'est-à-dire x = -2.

Méthode de résolution d'équations

On considère l'équation d'inconnue x: 2x + 5 = 17

*	On rassemble tous les termes constants dans l'autre membre de l'équation	2 x + 5 - 5 = 17 - 5 $2 x = 12$
L	On obtient la valeur de æ. La seule valeur possible de æ dans cette dernière équation est 6.	$\frac{2x}{2} = \frac{12}{2}$ $\infty = 6$
	On vérifie que 6 est bien solution de l'équation initiale, on teste alors l'égalité pour $oldsymbol{x}$ = 6.	Premier membre : $2 \times 6 + 5 = 12 + 5 = 17$ Deuxième membre : 17
5) (On conclut	L'équation admet une solution : 6