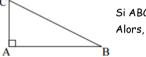
TG1 : Propriétés de Ppythagore

I) La racine carrée d'un nombre positif

<u>Définition</u>: a désigne un nombre positif.

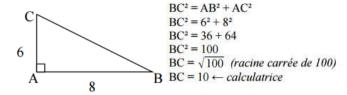

La racine carrée de a est le nombre positif dont le carré est a. Ce nombre est noté \sqrt{a} (cela se lit : « racine carrée de a »)

Exemples:

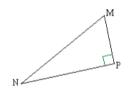
$0^2 = 0 \text{ donc } \sqrt{0} = 0$	$4^2 = 16 \text{ donc } \sqrt{16} = 4$	$8^2 = 64 \text{ donc } \sqrt{64} = 8$
$1^2 = 1$ donc $\sqrt{1} = 1$	$5^2 = 25 \text{ donc } \sqrt{25} = 5$	$9^2 = 81 \text{ donc } \sqrt{81} = 9$
$2^2 = 4 \text{ donc } \sqrt{4} = 2$	$6^2 = 36 \text{ donc } \sqrt{36} = 6$	10 2 = 100 donc $\sqrt{100}$ = 10
$3^2 = 9 \text{ donc } \sqrt{9} = 3$	$7^2 = 49 \text{ donc } \sqrt{49} = 7$	$11^2 = 121 \text{ donc } \sqrt{121} = 11$

II) <u>Le Théorème de Pythagore</u>

<u>Propriété</u>: Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des 2 autres côtés.


Si ABC est rectangle en A , Alors, BC 2 = AC 2 + AB 2

Exemples d'utilisations :


Le théorème de Pythagore permet de calculer la longueur d'un côté d'un triangle rectangle quand on connait les 2 autres côtés.

Exemple 1:

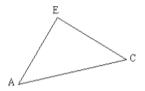
Le triangle ABC est rectangle A, d'après le théorème de Pythagore, on a:

Exemple 2:

On donne MP= 3 cm

Et MN = 7 cm

Dans le triangle MNP rectangle en P, d'après le théorème de Pythagore on a :


$$MN^2 = MP^2 + PN^2$$

 $7^2 = 3^2 + PN^2$
 $49 = 9 + PN^2$
 $PN^2 = 49 - 9 = 40$

PN = $\sqrt{40} \approx 6{,}32$ cm arrondi au centième près

III) Démontrer qu'un triangle est rectangle

Remarque : On doit connaître les 3 côtés du triangle

Exemple 1:

On donne AE = 4.2 cm, AC = 5.8 cm et EC = 4 cm

On calcule le plus grand côté au carré :

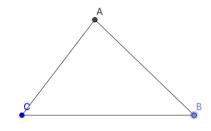
 $AC^2 = 5.8^2 = 33.64$

On calcule la somme des carrés

des 2 autres côtés

$$AE^2+EC^2 = 4,2^2+4^2$$

= 17,64 + 16


= 33,64

Donc : AC2 = AE2+EC2

<u>Conclusion</u>: D'après la <u>réciproque du théorème de Pythagore</u>, le triangle EAC est rectangle en E

IV) <u>Démontrer qu'un triangle n'est pas rectangle</u>

Exemple:

AC = 6 cm BC = 10 cm AB = 7.7 cm

On calcule le plus grand côté au carré :

 $BC^2 = 10^2 = 100$

On calcule la somme des carrés

des 2 autres côtés

$$AC^2 + AB^2 = 6^2 + 7,7^2$$

= 36 + 59,29

= 95,29

<u>Donc</u>: $100 \neq 95,29 \ d'où BC^2 \neq AC^2 + AB^2$

Conclusion: Le triangle n'est pas rectangle